Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1307-1323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488269

RESUMO

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.


Assuntos
Artrópodes , Populus , Animais , Artrópodes/genética , Ecossistema , Populus/genética , Estudo de Associação Genômica Ampla , Genótipo , Variação Genética
2.
Front Plant Sci ; 14: 1125942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925756

RESUMO

The core microbiota of plants exerts key effects on plant performance and resilience to stress. The aim of this study was to identify the core endophytic mycobiome in U. minor stems and disentangle associations between its composition and the resistance to Dutch elm disease (DED). We also defined its spatial variation within the tree and among distant tree populations. Stem samples were taken i) from different heights of the crown of a 168-year-old elm tree, ii) from adult elm trees growing in a common garden and representing a gradient of resistance to DED, and iii) from trees growing in two distant natural populations, one of them with varying degrees of vitality. Endophyte composition was profiled by high throughput sequencing of the first internal transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts (Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-resistant hosts. A small proportion (10%) of endophytic OTUs was almost ubiquitous throughout the crown while tree colonization by most fungal taxa followed stochastic patterns. A clear distinction in endophyte composition was found between geographical locations. By combining all surveys, we found evidence of a U. minor core mycobiome, pervasive within the tree and ubiquitous across locations, genotypes and health status.

3.
G3 (Bethesda) ; 13(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250890

RESUMO

Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.


Assuntos
Mapeamento Cromossômico , Populus , Recombinação Genética , Feminino , Masculino , Genótipo , Recombinação Homóloga , Polimorfismo de Nucleotídeo Único , Populus/genética , Fatores Sexuais , Recombinação Genética/genética , Meiose/genética , Seleção Genética/genética
4.
Front Plant Sci ; 13: 757810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185975

RESUMO

The rapid analysis of biopolymers including lignin and sugars in lignocellulosic biomass cell walls is essential for the analysis of the large sample populations needed for identifying heritable genetic variation in biomass feedstocks for biofuels and bioproducts. In this study, we reported the analysis of cell wall lignin content, syringyl/guaiacyl (S/G) ratio, as well as glucose and xylose content by high-throughput pyrolysis-molecular beam mass spectrometry (py-MBMS) for >3,600 samples derived from hundreds of accessions of Populus trichocarpa from natural populations, as well as pedigrees constructed from 14 parents (7 × 7). Partial Least Squares (PLS) regression models were built from the samples of known sugar composition previously determined by hydrolysis followed by nuclear magnetic resonance (NMR) analysis. Key spectral features positively correlated with glucose content consisted of m/z 126, 98, and 69, among others, deriving from pyrolyzates such as hydroxymethylfurfural, maltol, and other sugar-derived species. Xylose content positively correlated primarily with many lignin-derived ions and to a lesser degree with m/z 114, deriving from a lactone produced from xylose pyrolysis. Models were capable of predicting glucose and xylose contents with an average error of less than 4%, and accuracy was significantly improved over previously used methods. The differences in the models constructed from the two sample sets varied in training sample number, but the genetic and compositional uniformity of the pedigree set could be a potential driver in the slightly better performance of that model in comparison with the natural variants. Broad-sense heritability of glucose and xylose composition using these data was 0.32 and 0.34, respectively. In summary, we have demonstrated the use of a single high-throughput method to predict sugar and lignin composition in thousands of poplar samples to estimate the heritability and phenotypic plasticity of traits necessary to develop optimized feedstocks for bioenergy applications.

5.
Biotechnol Biofuels ; 14(1): 59, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676543

RESUMO

BACKGROUND: Pyrolysis-molecular beam mass spectrometry (py-MBMS) analysis of a pedigree of Populus trichocarpa was performed to study the phenotypic plasticity and heritability of lignin content and lignin monomer composition. Instrumental and microspatial environmental variability were observed in the spectral features and corrected to reveal underlying genetic variance of biomass composition. RESULTS: Lignin-derived ions (including m/z 124, 154, 168, 194, 210 and others) were highly impacted by microspatial environmental variation which demonstrates phenotypic plasticity of lignin composition in Populus trichocarpa biomass. Broad-sense heritability of lignin composition after correcting for microspatial and instrumental variation was determined to be H2 = 0.56 based on py-MBMS ions known to derive from lignin. Heritability of lignin monomeric syringyl/guaiacyl ratio (S/G) was H2 = 0.81. Broad-sense heritability was also high (up to H2 = 0.79) for ions derived from other components of the biomass including phenolics (e.g., salicylates) and C5 sugars (e.g., xylose). Lignin and phenolic ion abundances were primarily driven by maternal effects, and paternal effects were either similar or stronger for the most heritable carbohydrate-derived ions. CONCLUSIONS: We have shown that many biopolymer-derived ions from py-MBMS show substantial phenotypic plasticity in response to microenvironmental variation in plantations. Nevertheless, broad-sense heritability for biomass composition can be quite high after correcting for spatial environmental variation. This work outlines the importance in accounting for instrumental and microspatial environmental variation in biomass composition data for applications in heritability measurements and genomic selection for breeding poplar for renewable fuels and materials.

6.
Front Plant Sci ; 11: 545748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013968

RESUMO

To understand the genetic mechanisms underlying wood anatomical and morphological traits in Populus trichocarpa, we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome. Broad-sense trait heritabilities ranged from 0.117 to 0.477. Most traits were significantly correlated with geoclimatic variables suggesting a role of climate and geography in shaping the variation of this species. Fifty-seven SNPs from single trait GWAS and 11 SNPs from multitrait GWAS passed an FDR threshold of 0.05, leading to the identification of eight and seven nearby candidate genes, respectively. The percentage of phenotypic variance explained (PVE) by the significant SNPs for both single and multitrait GWAS ranged from 0.01% to 6.18%. To further evaluate the potential roles of candidate genes, we used a multi-omic network containing five additional data sets, including leaf and wood metabolite GWAS layers and coexpression and comethylation networks. We also performed a functional enrichment analysis on coexpression nearest neighbors for each gene model identified by the wood anatomical and morphological trait GWAS analyses. Genes affecting cell wall composition and transport related genes were enriched in wood anatomy and stomatal density trait networks. Signaling and metabolism related genes were also common in networks for stomatal density. For leaf morphology traits (leaf dry and wet weight) the networks were significantly enriched for GO terms related to photosynthetic processes as well as cellular homeostasis. The identified genes provide further insights into the genetic control of these traits, which are important determinants of the suitability and sustainability of improved genotypes for lignocellulosic biofuel production.

7.
Genes (Basel) ; 11(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722098

RESUMO

The ages and sizes of a sex-determination region (SDR) are difficult to determine in non-model species. Due to the lack of recombination and enrichment of repetitive elements in SDRs, the quality of assembly with short sequencing reads is universally low. Unique features present in the SDRs help provide clues about how SDRs are established and how they evolve in the absence of recombination. Several Populus species have been reported with a male heterogametic configuration of sex (XX/XY system) mapped on chromosome 19, but the exact location of the SDR has been inconsistent among species, and thus far, none of these SDRs has been fully assembled in a genomic context. Here we identify the Y-SDR from a Y-linked contig directly from a long-read PacBio assembly of a Populus trichocarpa male individual. We also identified homologous gene sequences in the SDR of P. trichocarpa and the SDR of the W chromosome in Salix purpurea. We show that inverted repeats (IRs) found in the Y-SDR and the W-SDR are lineage-specific. We hypothesize that, although the two IRs are derived from the same orthologous gene within each species, they likely have independent evolutionary histories. Furthermore, the truncated inverted repeats in P. trichocarpa may code for small RNAs that target the homologous gene for RNA-directed DNA methylation. These findings support the hypothesis that diverse sex-determining systems may be achieved through similar evolutionary pathways, thereby providing a possible mechanism to explain the lability of sex-determination systems in plants in general.


Assuntos
Evolução Biológica , Cromossomos de Plantas/genética , DNA de Plantas/análise , Genoma de Planta , Populus/genética , Cromossomos Sexuais , Processos de Determinação Sexual , DNA de Plantas/genética
8.
Ecol Evol ; 10(11): 5119-5134, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551087

RESUMO

Plants employ a diverse set of defense mechanisms to mediate interactions with insects and fungi. These relationships can leave lasting impacts on host plant genome structure such as rapid expansion of gene families through tandem duplication. These genomic signatures provide important clues about the complexities of plant/biotic stress interactions and evolution. We used a pseudo-backcross hybrid family to identify quantitative trait loci (QTL) controlling associations between Populus trees and several common Populus diseases and insects. Using whole-genome sequences from each parent, we identified candidate genes that may mediate these interactions. Candidates were partially validated using mass spectrometry to identify corresponding QTL for defensive compounds. We detected significant QTL for two interacting fungal pathogens and three insects. The QTL intervals contained candidate genes potentially involved in physical and chemical mechanisms of host-plant resistance and susceptibility. In particular, we identified adjoining QTLs for a phenolic glycoside and Phyllocolpa sawfly abundance. There was also significant enrichment of recent tandem duplications in the genomic intervals of the native parent, but not the exotic parent. Tandem gene duplication may be an important mechanism for rapid response to biotic stressors, enabling trees with long juvenile periods to reach maturity despite many coevolving biotic stressors.

9.
Tree Physiol ; 40(7): 886-903, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32175581

RESUMO

Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.


Assuntos
Secas , Micobioma/genética , Inundações , Fotossíntese , Folhas de Planta , Estresse Fisiológico , Árvores/genética
10.
Genome Biol ; 21(1): 38, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059685

RESUMO

BACKGROUND: Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination. RESULTS: Here we present the first evidence of large palindromic structures in a plant sex chromosome, based on a highly contiguous assembly of the W chromosome of the dioecious shrub Salix purpurea. The W chromosome has an expanded number of genes due to transpositions from autosomes. It also contains two consecutive palindromes that span a region of 200 kb, with conspicuous 20-kb stretches of highly conserved sequences among the four arms that show evidence of gene conversion. Four genes in the palindrome are homologous to genes in the sex determination regions of the closely related genus Populus, which is located on a different chromosome. These genes show distinct, floral-biased expression patterns compared to paralogous copies on autosomes. CONCLUSION: The presence of palindromes in sex chromosomes of mammals and plants highlights the intrinsic importance of these features in adaptive evolution in the absence of recombination. Convergent evolution is driving both the independent establishment of sex chromosomes as well as their fine-scale sequence structure.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Sequências Repetidas Invertidas , Salix/genética , Cromossomos Sexuais/genética , Conversão Gênica
11.
Front Plant Sci ; 10: 1249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649710

RESUMO

Understanding the regulatory network controlling cell wall biosynthesis is of great interest in Populus trichocarpa, both because of its status as a model woody perennial and its importance for lignocellulosic products. We searched for genes with putatively unknown roles in regulating cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline to combine multiple omics data sets in P. trichocarpa, including gene coexpression, gene comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and filtering approaches we produced a list of nine high priority gene candidates for involvement in the regulation of cell wall biosynthesis. We subsequently performed a detailed investigation of candidate gene GROWTH-REGULATING FACTOR 9 (PtGRF9). To investigate the role of PtGRF9 in regulating cell wall biosynthesis, we assessed the genome-wide connections of PtGRF9 and a paralog across data layers with functional enrichment analyses, predictive transcription factor binding site analysis, and an independent comparison to eQTN data. Our findings indicate that PtGRF9 likely affects the cell wall by directly repressing genes involved in cell wall biosynthesis, such as PtCCoAOMT and PtMYB.41, and indirectly by regulating homeobox genes. Furthermore, evidence suggests that PtGRF9 paralogs may act as transcriptional co-regulators that direct the global energy usage of the plant. Using our extended pipeline, we show multiple lines of evidence implicating the involvement of these genes in cell wall regulatory functions and demonstrate the value of this method for prioritizing candidate genes for experimental validation.

12.
Front Genet ; 10: 487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214244

RESUMO

Various 'omics data types have been generated for Populus trichocarpa, each providing a layer of information which can be represented as a density signal across a chromosome. We make use of genome sequence data, variants data across a population as well as methylation data across 10 different tissues, combined with wavelet-based signal processing to perform a comprehensive analysis of the signature of the centromere in these different data signals, and successfully identify putative centromeric regions in P. trichocarpa from these signals. Furthermore, using SNP (single nucleotide polymorphism) correlations across a natural population of P. trichocarpa, we find evidence for the co-evolution of the centromeric histone CENH3 with the sequence of the newly identified centromeric regions, and identify a new CENH3 candidate in P. trichocarpa.

13.
Front Genet ; 10: 417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134130

RESUMO

Various patterns of multi-phenotype associations (MPAs) exist in the results of Genome Wide Association Studies (GWAS) involving different topologies of single nucleotide polymorphism (SNP)-phenotype associations. These can provide interesting information about the different impacts of a gene on closely related phenotypes or disparate phenotypes (pleiotropy). In this work we present MPA Decomposition, a new network-based approach which decomposes the results of a multi-phenotype GWAS study into three bipartite networks, which, when used together, unravel the multi-phenotype signatures of genes on a genome-wide scale. The decomposition involves the construction of a phenotype powerset space, and subsequent mapping of genes into this new space. Clustering of genes in this powerset space groups genes based on their detailed MPA signatures. We show that this method allows us to find multiple different MPA and pleiotropic signatures within individual genes and to classify and cluster genes based on these SNP-phenotype association topologies. We demonstrate the use of this approach on a GWAS analysis of a large population of 882 Populus trichocarpa genotypes using untargeted metabolomics phenotypes. This method should prove invaluable in the interpretation of large GWAS datasets and aid in future synthetic biology efforts designed to optimize phenotypes of interest.

14.
New Phytol ; 223(1): 293-309, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843213

RESUMO

Genome-wide association studies (GWAS) have great promise for identifying the loci that contribute to adaptive variation, but the complex genetic architecture of many quantitative traits presents a substantial challenge. We measured 14 morphological and physiological traits and identified single nucleotide polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed from California, USA to British Columbia, Canada. We used whole-genome resequencing data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated with functional data. Broad-sense heritability (H2 ) ranged from 0.30 to 0.56 for morphological traits and 0.08 to 0.36 for physiological traits. In total, 4 and 20 gene models were detected using the single-trait and multitrait association methods, respectively. Several of these associations were corroborated by additional lines of evidence, including co-expression networks, metabolite analyses, and direct confirmation of gene function through RNAi. Multitrait association identified many more significant associations than single-trait association, potentially revealing pleiotropic effects of individual genes. This approach can be particularly useful for challenging physiological traits such as water-use efficiency or complex traits such as leaf morphology, for which we were able to identify credible candidate genes by combining multitrait association with gene co-expression and co-methylation data.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Populus/genética , Populus/fisiologia , Característica Quantitativa Herdável , Regulação para Baixo , Redes Reguladoras de Genes , Genes de Plantas , Genótipo , Geografia , Padrões de Herança/genética , Análise Multivariada , Estômatos de Plantas/fisiologia , Populus/anatomia & histologia , Análise de Componente Principal
15.
Mol Genet Genomics ; 293(6): 1437-1452, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30022352

RESUMO

Dioecy has evolved numerous times in plants, but heteromorphic sex chromosomes are apparently rare. Sex determination has been studied in multiple Salix and Populus (Salicaceae) species, and P. trichocarpa has an XY sex determination system on chromosome 19, while S. suchowensis and S. viminalis have a ZW system on chromosome 15. Here we use whole genome sequencing coupled with quantitative trait locus mapping and a genome-wide association study to characterize the genomic composition of the non-recombining portion of the sex determination region. We demonstrate that Salix purpurea also has a ZW system on chromosome 15. The sex determination region has reduced recombination, high structural polymorphism, an abundance of transposable elements, and contains genes that are involved in sex expression in other plants. We also show that chromosome 19 contains sex-associated markers in this S. purpurea assembly, along with other autosomes. This raises the intriguing possibility of a translocation of the sex determination region within the Salicaceae lineage, suggesting a common evolutionary origin of the Populus and Salix sex determination loci.


Assuntos
Cromossomos de Plantas , Salix/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Mapeamento Cromossômico , Evolução Molecular , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Salicaceae/genética
16.
Biotechnol Biofuels ; 10: 253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213313

RESUMO

BACKGROUND: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.

17.
Mol Ecol ; 25(21): 5330-5344, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27661461

RESUMO

Asexual reproduction is a common and fundamental mode of reproduction in plants. Although persistence in adverse conditions underlies most known cases of clonal dominance, proximal genetic drivers remain unclear, in particular for populations dominated by a few large clones. In this study, we studied a clonal population of the riparian tree Populus alba in the Douro river basin (northwestern Iberian Peninsula) where it hybridizes with Populus tremula, a species that grows in highly contrasted ecological conditions. We used 73 nuclear microsatellites to test whether genomic background (species ancestry) is a relevant cause of clonal success, and to assess the evolutionary consequences of clonal dominance by a few genets. Additional genotyping-by-sequencing data were produced to estimate the age of the largest clones. We found that a few ancient (over a few thousand years old) and widespread genets dominate the population, both in terms of clone size and number of sexual offspring produced. Interestingly, large clones possessed two genomic regions introgressed from P. tremula, which may have favoured their spread under stressful environmental conditions. At the population level, the spread of large genets was accompanied by an overall ancient (>0.1 Myr) but soft decline of effective population size. Despite this decrease, and the high clonality and dominance of sexual reproduction by large clones, the Douro hybrid zone still displays considerable genetic diversity and low inbreeding. This suggests that even in extreme cases as in the Douro, asexual and sexual dominance of a few large, geographically extended individuals does not threaten population survival.


Assuntos
Genética Populacional , Hibridização Genética , Populus/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Reprodução Assexuada , Espanha
18.
Front Microbiol ; 6: 1033, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441951

RESUMO

There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS) with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype MicroArray (PM) techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.

19.
Mol Ecol ; 19(8): 1638-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20345678

RESUMO

Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L., a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence-based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of 'selective sweeps' in diversity-based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species.


Assuntos
Adaptação Biológica/genética , Evolução Molecular , Genética Populacional , Populus/genética , DNA de Plantas/genética , Marcadores Genéticos , Variação Genética , Genótipo , Repetições de Microssatélites , Fenótipo , Países Escandinavos e Nórdicos , Seleção Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...